
Subscriber access provided by American Chemical Society

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155
Sixteenth Street N.W., Washington, DC 20036

Article

G-Protein-Coupled Receptor Affinity Prediction Based on the Use of a
Profiling Dataset:  QSAR Design, Synthesis, and Experimental Validation

Catherine Rolland, Rafael Gozalbes, Eric Nicola, Marie-France Paugam,
Laurent Coussy, Frdrique Barbosa, Dragos Horvath, and Frdric Revah

J. Med. Chem., 2005, 48 (21), 6563-6574• DOI: 10.1021/jm0500673 • Publication Date (Web): 22 September 2005

Downloaded from http://pubs.acs.org on March 29, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

• Supporting Information
• Links to the 5 articles that cite this article, as of the time of this article download
• Access to high resolution figures
• Links to articles and content related to this article
• Copyright permission to reproduce figures and/or text from this article

http://pubs.acs.org/doi/full/10.1021/jm0500673


G-Protein-Coupled Receptor Affinity Prediction Based on the Use of a Profiling
Dataset: QSAR Design, Synthesis, and Experimental Validation

Catherine Rolland,*,† Rafael Gozalbes,† Eric Nicolaı̈,† Marie-France Paugam,† Laurent Coussy,‡
Frédérique Barbosa,† Dragos Horvath,†,§ and Frédéric Revah†

Cerep, 128 rue Danton, 92500 Rueil-Malmaison, France, and Cerep, Le Bois l’Evêque, 86600 Celle l’Evescault, France
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A QSAR model accounting for “average” G-protein-coupled receptor (GPCR) binding was built
from a large set of experimental standardized binding data (1939 compounds systematically
tested over 40 different GPCRs) and applied to the design of a library of “GPCR-predicted”
compounds. Three hundred and sixty of these compounds were randomly selected and tested
in 21 GPCR binding assays. Positives were defined by their ability to inhibit by more than
70% the binding of reference compounds at 10 µM. A 5.5-fold enrichment in positives was
observed when comparing the “GPCR-predicted” compounds with 600 randomly selected
compounds predicted as “non-GPCR” from a general collection. The model was efficient in
predicting strongest binders, since enrichment was greater for higher cutoffs. Significant
enrichment was also observed for peptidic GPCRs and receptors not included to develop the
QSAR model, suggesting the usefulness of the model to design ligands binding with newly
identified GPCRs, including orphan ones.

Introduction
G-protein-coupled receptors (GPCRs) are trans-

membrane proteins that play a critical role in signal
transduction. Members of this superfamily respond to
stimuli as diverse as neurotransmitters, hormones, and
sensory stimuli such as light, odor, and taste, which
selectively activate intracellular signaling events through
interaction with heterotrimeric G proteins. As GPCRs
are initiators of a cascade of cellular responses via
diverse extracellular mediators, they can be used to
control cell behavior, when targeted by specific drug
molecules. It is estimated that about 50% of currently
commercialized drugs are active through their interac-
tion with one of a set of about 30 different GPCRs.1,2

Also, analysis of the human genome has shown the
number of potentially relevant GPCRs for drug discov-
ery to be up to 600, among which 160 receptors have
no known ligand (orphan receptors). GPCRs have been
classified into three major subfamilies on the basis of
their relation to rhodopsin (type A), secretin receptor
(type B), and metabotropic receptors (type C).2,3 Sub-
groups of family A, which is by far the largest, have been
recently defined by Joost and Methner4 for more ac-
curate phylogenetic analyses to predict possible ligands
for orphan receptors.

The determination of the 3-D structure of GPCRs by
X-ray crystallography or nuclear magnetic resonance
has been hampered by their transmembrane nature.
Only one GPCR crystallographic structure has been
reported until now, that of bovine rhodopsin.5 Although
this available structural template is widely used for the

interpretation of experimental data and for the building
of molecular models of other receptors of family A,
rhodopsin reveals a low sequence similarity to others
GPCRs, limiting its relevance in drug design efforts.
More generally, while homology modeling of GPCR
structures has been a widely used modeling technique,6,7

several authors have expressed their skepticism con-
cerning the utility of this approach.7,8

In the present study, our objective has been to capture
characteristic structural features of GPCR ligands. To
reach this goal, we have systematically studied the
binding of a set of 1939 diverse compounds to a reference
panel of 40 different GPCRs. The compounds used
correspond to most marketed drugs, compounds having
failed in clinical trials, and reference compounds. The
data set was produced in-house under standardized
operating procedures and lead to the generation of
515 000 experimental measures and 71 300 measurable
IC50s (BioPrint, see ref 9).

In a first step, a “global” quantitative structure-
activity relationship (QSAR) model was developed by
using the average pIC50 value for these 40 GPCRs. In a
second step, this model was used to design a library of
compounds predicted to display GPCR activity (i.e. rich
in structural patterns that are commonly recognized by
a majority of GPCRs). Finally, the predicted compounds
were synthesized and tested over a set of 21 GPCRs,
some belonging to the initial training set, others not
belonging to it. These results were compared to that
obtained when testing compounds predicted as non-
GPCR by the model. We also analyzed the capacity of
our model to recognize selective GPCR ligands in
contrast to molecules binding to multiple receptors. This
study allows us to assess the relevance and limitations
of such a global QSAR approach for the design of GPCR-
focused libraries.
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Dataset and Activity Variable Used To Develop
the QSAR Model. Compounds from the BioPrint
collection were tested over the entire panel of GPCR
targets described in Table 1, and pIC50 values were
systematically measured whenever the primary per-
centage of inhibition value exceeded 30% at 10 µM.
Otherwise, compounds were considered as “inactive”,
and their pIC50 value was set by default to 3.5. The
activity variable monitored in this study, further on
termed as the “global GPCR” or “GPCR” affinity, has
been defined as the plain average of the pIC50 values of
each compound over the entire panel of GPCR targets
included in BioPrint [pIC50 ) -logIC50 (M)]. As it is
unlikely to find a compound acting as a potent nano-
molar binder on every GPCR target in the panel, the
global GPCR affinity is expected to adopt values from
3.5 (inactivity vs all of the GPCRs) to an upper limit
below 9. In practice, this GPCR upper value was found
to be 5.8 for the compound collection tested. The
distribution of global GPCR affinity values was found
to be lower than 4.0 for 1541 compounds and equal to
or higher than 4.0 for 398 compounds.

For QSAR model-building purposes, the BioPrint
compound set was split into a learning set (LS, 1551

compounds representing 80% of the total database) and
a validation set (VS, 388 compounds, representing the
remaining 20% of the database). Splitting was done such
as to ensure an equivalent relative distribution of
actives and inactives throughout both sets (around a
20% of compounds had pIC50 values g4.0 for both LS
and VS).

QSAR Methodology. A detailed discussion of the
technical aspects of this methodology is beyond the
purpose of this publication and has been published
elsewhere.10-13

Descriptors. The elaboration of a QSAR model
requires the previous encoding of compound structures
as molecular descriptors, which capture information
regarding the structural features responsible for the
activity under a numerical form. The Cerep proprietary
descriptors consist of various 3-D terms of “pharma-
cophoric” nature, carrying information about the nature
and spatial distribution of the various pharmacophore
features in a molecule.

(a) Fuzzy Bipolar Pharmacophore Autocorrelo-
grams (FBPA). In order to generate the FBPA of a
compound, its atoms are first classified according to
their pharmacophoric features (hydrophobicity, aroma-
ticity, hydrogen-bond donor or -acceptor propensity,
positive or negative charge). Any atom may possess one
or more such features, detected by a feature assign-
ment routine, according to empirical rules. The 21
pairs of these six features are defined (hydrophobic-
hydrophobic, hydrophobic-aromatic, etc.). All the atom
pairs occurring in a molecule are first assigned to one
of these 21 pharmacophore pair categories and further-
more broken down into 12 interatomic-distance-related
bins of 1 Å width, going from 3 to 15 Å. This defines a
total of 252 classes to which an atom pair may belong,
and the fingerprint is thus a 252-dimensional vector in
which every component represents the number of atom
pairs associated to the given category, averaged over a
diverse sample of conformers.11

(b) Pharmacophore Type Areas (PTA) report the
molecular areas corresponding to each type of pharma-
cophoric feature (aliphatic, aromatic, hydrogen-bond
acceptor and donor, cationic and anionic areas).10

(c) Extended Field Overlap (EFO) terms offer a
synthetic characterization of the spatial distribution of
pharmacophoric features in the molecule: these terms
are volume integrals of the pairwise products of local
field intensities associated with each of the possible
combinations of the pharmacophore types. For these
descriptors, a more detailed (“extended”) definition of
the pharmacophore types is used, featuring 10 rather
than six explicit pharmacophore types. For example, the
hydrogen bond donor class is further split into “aromatic
hydrogen-bond donors” (e.g., indole -NH-), “donors and
acceptors” (e.g., alcohol -OH), and “donors only” (e.g.,
amide -NH).

QSAR Model Building. After the filtering out of
constant or strongly intercorrelated (R2 > 0.8) descriptor
columns, the final activity-descriptor matrix, aligning
each experimental activity against the associated can-
didate molecular descriptors, is built and fed into the
various descriptor selection algorithms in order to find
the optimal structure-activity relationships. Synergy
models based on two different approaches, linear re-

Table 1. List of 40 GPCR Receptors Included in BioPrint and
Used for the Development of the “Global GPCR” QSAR Model

GPCRs type family

no. of
compds
tested

no. of
compds

with
inhibn
> 70%

higher
pIC50
values

5-HT1 A biogenic amine A19 1813 266 9.3
5-HT1 B biogenic amine A19 1795 124 9.4
5-HT1 D biogenic amine A19 1832 58 7.9
5-HT2 A biogenic amine A17 1776 249 8.5
5-HT2 B biogenic amine A17 1628 323 8.7
5-HT2 C biogenic amine A17 1622 207 8.4
5-HT4e biogenic amine - 1717 102 8.4
5-HT6 biogenic amine A17 1788 155 9.2
5-HT7 biogenic amine A19 1797 235 8.7
A1 biogenic amine A18 1814 41 8.3
A2A biogenic amine A18 1620 49 8.2
R1A biogenic amine A17 1850 227 9.2
R2 biogenic amine A17 1803 202 8.5
AT1 peptide A3 1870 11 8.6
B2 peptide A3 1874 2 5.3
â1 biogenic amine A17 1867 64 8.6
â2 biogenic amine A17 1698 102 9.0
CB1 cannabinoid A13 1662 6 6.7
CCKA peptide A6 1872 1 5.2
CCR1 chemokine A1 1861 2 4.5
CGRP peptide B 1728 0 5.3
D1 biogenic amine A17 1828 189 9.1
D2 biogenic amine A17 1825 166 8.9
D3 biogenic amine A17 1612 229 8.6
D4.4 biogenic amine A17 1683 168 8.9
δ opioide A4 1837 77 8.3
ETB peptide A7 1860 1 5.3
GABAB aminobutyric acid C 1749 10 6.6
H1 biogenic amine A18 1778 215 8.7
H2 biogenic amine A17 1780 217 7.3
κ opioid A4 1751 198 9.7
M1 biogenic amine A18 1778 246 9.3
M2 biogenic amine A18 1812 217 9.0
M3 biogenic amine A18 1850 155 8.7
MC4 peptide A13 1841 27 6.7
µ opioid A4 1796 166 9.1
NK1 peptide A9 1682 25 6.3
V1a peptide A6 1857 3 6.9
VIP peptide B 1844 5 5.1
Y1 peptide A9 1850 8 6.3
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gression on one hand, and predictive neighborhood
behavior on the other, are employed.12,13

(a) Linear Models. Learning and validation sets
were used to train and validate several thousands of
statistically valid linear equations, expressing the es-
timate of the global GPCR affinity value as linear
combinations of molecular descriptors selected by a
genetic algorithm (GA).10 The linear models within each
pool were subjected to a diversity analysis procedure
in order to discard redundant equations based on
roughly similar descriptor choices. This procedure as-
sessed whether some of the different descriptors used
by different equations were intercorrelated, and there-
fore interchangeable.14 The remaining diverse QSAR
equations were further classified by “size” (number of
descriptors they include) and statistical performance
(root mean square error and correlation coefficient). The
best equations of each encountered size were kept on
hand for final validation of the VS molecules and for
further analysis. Five consensus models were also
generated as weighted averages of the best models found
by the GA, where the contribution of each equation to
the consensus model decreases with decreasing R2.

(b) Predictive Neighborhood Behavior Models
(PNB). This approach is based on the “neighborhood
behavior” principle (similar structures f similar prop-
erties),15,16 and PNB models tend to extrapolate the
property of a novel compound as an average of proper-
ties of reference molecules that are shown to be struc-
turally similar, according to a well-defined computed
similarity score.12,13 In addition to the calculated prop-
erty, the model also returns, for each compound, two
confidence thresholds controlling the relative trust in
the PNB model prediction: a “density criterion” ex-
pressing how well the current compound is surrounded
by relevant neighbors, as a function of their dissimilar-
ity to the candidate compound, and a “homogeneity
criterion” measuring the (weighed) variance of the
property within the set of selected neighbors. A low
variance means that, as expected on behalf of the
similarity principle, the selected neighbors actually have
similar properties. Good density and homogeneity scores
suggest the prediction for a given compound to be
reliable, as this molecule is shown to have many
neighbors of roughly identical properties and is there-
fore likely to display a similar behavior as well.

(c) Synergy Models. The calibration of a synergy
model consists of finding, with regard to the confidence
indices of the PNB prediction, an optimal balance of
weights for the linear vs the PNB prediction, such that
the returned “synergy” estimations (weighted averages
of the two independent linear and PNB predictions,
respectively) are as close as possible to the experimental
values.10

QSAR Modeling. A computational quantitative struc-
ture-activity model was built and validated by tools
specifically developed to process the learning and vali-
dation sets of the structures and corresponding phar-
macological profiles included in the BioPrint data-
base.9,10 In a first step, the methodology consists of
building two sets of “parent” models. The first set of
parents consists of predictive equations: a series of
optimal linear equations, obtained by multilinear re-
gression coupled to a genetic-algorithm-driven descrip-

tor selection process. The second series of parents
consists of predictive neighborhood behavior (PNB)
models, estimating the properties of a compound as a
weighted average of properties of its closest neighbors
among reference compounds in structural space, accord-
ing to a tunable similarity metric. The final models are
“synergy” approaches, combining the predictions of two
conceptually independent parent approaches, based on
an equation and respectively on neighborhood behavior,
to return a more accurate prediction as a weighted
average of the estimates provided by each parent.10

QSAR Model Analysis. The QSAR builder gener-
ated several linear models (containing 26-39 descrip-
tors) and PNB models (87-116 descriptors). Synergy
models obtained by combination of the best linear and
PNB approaches showed, as expected, a better predic-
tive performance than any of their parents taken
separately. The best global GPCR synergy model (R2 )
0.74-0.67 and rms ) 0.20-0.24 for the LS and VS,
respectively) was further used for this study (the values
for the LS and VS of the best linear model were R2 )
0.71-0.63 and rms ) 0.24-0.29 respectively, and R2 )
0.65-0.61 and rms ) 0.22-0.24 for the best PNB
model). Figure 1 shows the comparison between pre-
dicted and experimental pIC50 values for the validation
set. Without going into further details, it is worth noting
that aromatic-positive charge pairs within different
distance bins appear among the key molecular descrip-
tors used in this model, standing for a well-known
aromatic-cation pharmacophore pattern that is familiar
to GPCR ligands (examples of such pattern are de-
scribed in the literature for various GPCRs17-20). Nev-
ertheless, the model does not restrain the selection of
molecules according to such standard criteria, since
there were compounds predicted as non-GPCR and
experimentally found as inactive on the panel of the 21
GPCRs, despite a structure containing a positive charge

Figure 1. Experimental (“ACTexp”) versus predicted values
(“ACTpred”) for the GPCR average activity of the validation
set (VS). Circles mark the position of the synergy model
predictions: when both linear and PNB predictions are avail-
able, the corresponding marker is spiked. By contrast, hollow
blue circles mark the predicted values for the molecules failing
to be predicted by the PNB approach (the case when the
synergy predictions equal the linear model-based prediction).
When both linear and PNB values exist, the dotted red bars
span the range between the predicted values of the linear (red
plus sign) and PNB models (red x), respectively.
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not far from an aromatic ring. The model also includes,
among others, a positive contribution of the total
number of aromatic rings in a molecule, and negative
contributions from the (square of the) total van der
Waals surface areas associated with these same aro-
matic groups and the presence of aromatic-hydrogen-
bond acceptor pairs within a distance between 4 and 5
Å.

A further, more intuitive grasp of the QSAR model
quality can be obtained by using a binary classification
statistics or confusion matrix in terms of “H(igh)” and
“L(ow)” average activity values (Table 2). Compounds
with a global GPCR pIC50 score below 4.0 were consid-
ered as “inactive” (and formally assigned to the Lexp

class), by contrast to the “actives” that show some
significant binding with respect to at least one of the
GPCRs, so that their pIC50 values exceed 4.0 (Hexp class).
Similarly, compounds with predicted pIC50 higher than
4.0 were therefore considered “predicted active” (of the
Hpred class), by contrast to the “predicted inactive”
ordered into the Lpred category. Within the validation
set, the activity class predicted by the model matched
the experimental activity class of the compound in
89.9% of the cases. Out of the actual “actives” present
in the validation set, 87.4% were correctly predicted to
be active, whereas 90.6% of the real “inactive” were
correctly recognized as such by the model. On the other
hand, whenever the model predicted a compound to be
active, it turned out to be right in 70.6% of the cases,
whereas 96.5% of the predicted inactive turned out to
be inactive indeed. In other words, a medicinal chemist
screening only the category of Nact predicted actives (99
compounds) rather the entire validation set of NVS (388
compounds) would have discovered 87.5% of all the
actives that were available, while only 29.3% of the
tested molecules would have turned out to be inactive.

Library Design and Synthesis. To assess the
usefulness of the global QSAR approach, the model was
used to design and synthesize a GPCR-focused library.
On one hand, the model was employed to screen for
putative GPCR actives (using a criterion of predicted
pIC50 g 4.0) within a previously synthesized 16 000-
compound diverse library. On the other hand, 50 virtual
focused libraries of 200 compounds each were con-
structed around scaffolds derived from in-house medici-
nal chemistry know how, and the resulting compounds
were then prioritized by the global QSAR model. After
analysis of the prediction results for each of the virtual
compounds, the chosen compounds were synthesized.
These combined approaches yielded a library of 2400

compounds predicted as GPCR-active by the global
QSAR model.

Experimental Validation of the Library. To vali-
date the relevance of the methodology, a 10% sample of
the proposed GPCR library (240 randomly selected
products) was experimentally assayed for binding on a
panel of diverse GPCRs and compared to a sample of a
general library taken as reference (720 randomly chosen
products). We initially profiled these 960 compounds on
a set of 14 receptors (5-HT1a, 5-HT2a, 5-HT2c, 5-HT7, µ,
R1A, R2A, κ, M1, M2, M3, D1, D2, H1) (Table 1), chosen
among those having the highest hit rates within Bio-
Print and representing a variety of GPCR subfamilies
(A4, A17, A18, A19).4

The set of 960 compounds was tested at 10 µM on each
receptor. Figure 2 compares the global hit rates with
respect to all the targets of the two subsets of molecules,
where “hits” are defined as leading to at least 70%
inhibition of binding of the reference radioligand when
assayed at 10 µM. This stringent threshold allowed us
to focus on the most robust hits. The global hit rate of
the GPCR library subset reached 14.3%, which repre-
sented a 3.1-fold average hit rate enhancement with
respect to the 4.6% rate of the general library subset.
Receptor-specific hit rate enhancements ranged from 1.6
(in the case of the κ opioid receptor) up to 9.1 (for the
D2 dopamine receptor).

Among the 720 compounds selected above from the
general library, several are likely to display GPCR-
binding features. As a consequence for model validation

Table 2. Percentages of Learning Set (LS) Molecules and Validation Set (VS) Molecules Classified in Each of the Four Categories
[Correctly Predicted Inactives (Lexp, Lpred), Correctly Predicted Actives (Hexp, Hpred), Inactives Predicted To Be Active (False Positives)
(Lexp, Hpred), and Actives Predicted To Be Inactive (False Negatives) (Hexp, Lpred)] According to the “Global GPCR” QSAR Modela

Lexpt (LS/VS) Hexpt (LS/VS)

Lpred (LS/VS) 73.4%/71.9% 2.7%/2.6% NPV ) 96.5%/96.5%
Hpred (LS/VS) 6.1%/7.5% 17.8%/18.0% PPV ) 74.6%/70.6%

Sp ) 92.4%/90.6% Sn ) 86.8%/87.4% A ) 91.2%/89.9%
a A confusion matrix summarizing the performance of the “global GPCR” QSAR model is presented. The “L” and “H” refer to the low-

and high-affinity classes, with cutoff value of 4.0, and “exp” and “pred” refer to experimental and predicted values. Sn, Sp, PPV, and NPV
stand respectively for “sensitivity” (percentage of experimental positives predicted as positives), “specificity” (percentage of correctly predicted
as nonbinders), “positive probability value” (probability that a predicted binder will actually a binder), and “negative probability value”
(probability that a predicted nonbinder will actually be a nonbinder). The “% efficacy” of a predicted class stands for its contents (%) in
compounds of the same experimental class, while “% found” and “sensitivity” represent the percentages of members of a given experimental
class that were correctly classified by the prediction. The lower right box shows the accuracy (A ) overall percentage of correctly predicted
compounds).

Figure 2. Experimental binding resultssat 70% of inhibition
at 10 µMsof the 960 compounds (240 compounds from the
GPCR-predicted library plus 720 compounds from a general
diverse library) on 14 GPCRs. White bars correspond to the
hit rates of the GPCR-oriented library and black ones to those
of the diversity library. The added values correspond to the
hit rate enhancement between these two sets of compounds
for each receptor.
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purposes, the 960 compounds (corresponding to the 720
“general” compounds plus the 240 compounds from the
GPCR set) were partitioned into “predicted actives” (360
compounds with predicted global pIC50 g 4.0) and
“predicted inactives” (600 compounds with global pIC50
< 4.0). Figure 3 compares the hit rates of the two
compound categories, with a clear predominance of hits
within the set of “predicted GPCR actives” (13.6%), e.g.
5.7 times more than found among the “predicted inac-
tives” (2.4%). Taken individually, the hit rate enhance-
ment ranged from 1.7- up to 63.7-fold (receptors 5-HT2c
and D2, respectively). In the case of M3, only the
“predicted active” set displayed hits.

To assess the prediction ability of the model on
receptors having few hits or totally absent from the
initial BioPrint dataset, the initial panel of receptors
was completed with seven additional GPCRs belonging
to subfamilies A3, A5, A6, A7, A9 and A13: MC3, AT1,
CB1, V1a, MCH-1, NK2, and Ghrelin receptors (the latter
three receptors being absent in BioPrint). This led to
the definition of an extended validation panel, consisting
in 21 GPCRs from 10 different subgroups including
amine, peptide, and lipid receptors. The results on the
21 GPCRs are presented in Figure 3 with a cutoff set
at 70% inhibition at 10 µM. The average hit rate for
the set of “predicted actives” reached 9.7%, which
corresponds to a 5.5-fold enrichment relative to the
“predicted inactives”.

Figure 4 shows that the average hit rate enrichment
for peptidic GPCRs was consistent with respect to the
extended set (5.8-fold versus 5.5-fold, respectively).
Among the peptidic GPCRs, the enrichment was par-
ticularly important for MC3 and MCH-1 receptors, for
which hits were found only in the set of predicted
actives.

These results support the notion that the global
GPCR model can be used to enhance hit rates on GPCRs
which were not used to build it and raises the potential
interest of such a model for the discovery of molecules
active on orphan GPCRs.

The comparison of the hit rate enhancement for the
set of predicted active at three different percentages of

inhibition thresholds (Figure 5a) showed that higher
enrichments were obtained with respect to the more
potent hits, suggesting that the model favored indeed
the most robust hits. Relative enrichment in compounds
binding to several receptors is also stronger, as sug-
gested in Figure 5b. For each inhibition threshold value,
the enrichments were higher for compounds “hitting”
more than three receptors than for compounds “hitting”
more than one receptor, reaching in the latter case 18.3-
fold at 90% inhibition. The same trends were observed
with the panel of the six peptide GPCRs and CB1
receptor taken separately (Figure 5c,d): (i) higher hit
rate enhancement at higher inhibition cutoff and (ii) hit
rate enhancement increasing from 1.5- to 9-fold when
comparing the compounds hitting at least one (Figure
5c) or three receptors (Figure 5d) at 50% inhibition. This
latter observation is most likely a consequence of the
methodology used for model building, which focuses on
average pIC50s rather than on individual affinity for
each receptor.

Using a model based on average pIC50 values raises
immediately the issue of specificity. A critical aspect was
to verify if the molecules selected by the model are not
promiscuous compounds binding to GPCRs in an un-

Figure 3. Experimental binding resultssat 70% of inhibition at 10 µMsof the 960 compounds (partitioned into “GPCR-predicted”
and “non-GPCR-predicted”) on 21 GPCRs. The graph compares the hit rates of the set of 360 GPCR-predicted compounds (white
bars) with respect to those of the set of 600 non-GPCR-predicted compounds (black bars) on each receptor (enrichment factors
added atop of each pair of columns, excepted for receptors for which there were no hits on the non-GPCR-predicted series).

Figure 4. Experimental binding results of the 960 compounds
on peptide receptors from the different subgroups of the GPCR
family. The graph compares the hit rates of the set of 360
GPCR-predicted compounds (white bars) with respect to those
of the set of 600 non-GPCR-predicted compounds (black bars)
on each receptor, at 70% of inhibition at 10 µM (enrichment
factors added atop of each pair of columns except for MC3 and
MCH1, since there were no hits on the non-GPCR-predicted
series).

GPCR Affinity Predicted with a Profiling Dataset Journal of Medicinal Chemistry, 2005, Vol. 48, No. 21 6567



distinguishable fashion but rather compounds with
affinity for a limited number of receptors. Therefore, we
have analyzed the number of receptors hit by each of
the 360 GPCR-predicted compounds synthesized and
tested in vitro (see Figure 6). Only 22.5% are found
active on more than three receptors (out of 21). Less
than 9% hit more than seven receptors.

On the other hand, GPCR-focused libraries are in-
tended for HTS and MTS purposes to provide chemists
with new hits for drugable or orphan GPCR’s. For such
an objective, a model able to identify “privileged struc-
tures”21 around which focused libraries are then syn-
thesized is of greater interest than individual QSAR
models aiming at the identification of very specific
ligands.

As an illustration, we show in the next section that
compounds sharing the same “privileged structure” can
display very different activity profiles on a panel of
GPCR’s.

From Privileged Structures to Specific Ligands.
Our model selects preferentially compounds with high
average affinity for multiple GPCRs, i.e., “privileged”
templates binding GPCRs.21 We have explored whether

the pharmacological specificity of these templates could
be modulated by introducing structural diversity ele-
ments on these structures.

An example of a privileged template identified by the
model is the 1-(homopiperidin-1-yl) ethylindole scaffold
1 (Figure 7). Among the 960 compounds tested, 12
compounds shared this scaffold and all of them were
predicted to be GPCR-active by the model, with pre-
dicted average pIC50s between 4.3 and 5.2. Although it
is not surprising that scaffold 1 has GPCR binding
properties,22 it is noteworthy that among these 12

Figure 5. Percentage of molecules binding with at least one receptor (out of 21 in part a and out of seven peptide receptors in
part c) or at least three receptors (out of 21 in part b and out of seven peptide receptors in part d) at 10 µM for the sets of
predicted actives versus predicted inactives, where the lower inhibition threshold required for a compound to be considered a
binder is variable (50, 70, or 90% respectively).

Figure 6. Distribution of the 360 GPCR-predicted compounds
according to the number of receptors they hit (with at least
70% of inhibition at 10 µmol), among the 21 receptors of the
validation set.

Figure 7. Structures with a common scaffold that are
predicted as GPCR-active by the model.
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compounds a large variety of binding profiles was
obtained depending on the diversity introduced at the
nitrogen of the tryptamine moiety (R1, R2). The struc-
tures of the compounds are shown in Figure 7, and the
corresponding binding profiles (percentages of inhibition
at 10 µM) in Table 3.

Among the six amides (1a-f), the 2-methylthiazole-
1-carboxamide (1a) and the 2,5-bis(trifluoromethyl)-
benzamide (1c) display a rather specific profile (Table
3), hitting few GPCRs (µ and 5-HT2A for 1a, µ and κ for
1c). On the other hand, amides 1d-f hit many more
receptors. Comparison between 1c and 1d, which differ
only by the position of a trifluoromethyl group, showed
that a slight modification around a privileged structure
can lead to a significant change in profile. These amide
derivatives hit mainly aminergic GPCRs but also three
out of the six peptide GPCRs: NK2, MCH-1, and V1a.

Again, the two sulfonamides 1g and 1h hit several
aminergic GPCRs, NK2 and MCH-1, but they are not
active on V1a.

Finally, the four related iminothiazole derivatives
(1i-l) displayed very different profiles, since 1j did not
hit any of the 21 GPCRs tested, while its 4-chloro
analogue 1i hit not only aminergic receptors but also
two peptide GPCRs (NK2 and MC-3). On the other hand,
1k and 1l hit no peptide GPCRs.

Interestingly, even if 1 is a template that one could
assume to be particularly relevant to identify hits on
monoaminergic receptors such as 5HT, Table 3 shows
that it is also a very useful template to identify new
hits on peptide receptors, as for example V1a.

These results suggest that while the model identifies
privileged scaffolds binding potentially to a large spec-
trum of GPCRs, the specific chemical modifications
around these templates provide elements of specificity.

Relevance of the Global Model toward Peptide
and Chemokine Receptors. Due to the specific prop-
erties of peptidic GPCRs, we checked the ability of our
model to detect templates acting specifically on peptide
and chemokine GPCRs.23,24 For that purpose, we chal-
lenged the model with a set of 69 compounds recently
described as ligands for MC-1, MC-3, MC-4, MCH-1,
UII, sst1-3, CCR1-5, and CXCR1-2 receptors (diverse
chemotypes were selected for each receptor) (Chart 1).
Seven out of eight ligands of MC-1, -3, and -4 were
predicted as actives, as well as eight out of nine MCH-1
ligands, seven out of eight somatostatin receptor ligands,
four out of four urotensin II receptor ligands, and 21
out of 31 CCR1, 2, 3, 5 ligands. Lower prediction rates
were obtained with CXCR1/CXCR2 and CCR4 (1/9).
Hypothetically, the low prediction rate achieved in the
latter cases might be due to the specific structural
features of the binding site of CXCR1/CXCR2 and
CCR4.25

The model is thus able to detect ligands that are
described in the literature, but it is mainly intended to
reveal original new GPCR ligands. As an illustration,
Figure 8 shows some examples of GPCR-predicted
compounds that we found active on NK2 and MCH-1
receptors, respectively (percentage of inhibition higher
than 70%), despite their dissimilarity with the com-
monly described pharmacophores for these targets: no

Table 3. Binding Profiles (percentages of inhibition at 10 µM) of 12 Compounds Sharing the Same Compound Structure
(see Figure 6)
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Chart 1. GPCR Ligands Described in Recent Literature
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positive charge in the molecule 2a, while it appears in
all known MCH-1 ligands and no typical NK related
“central nitrogen/two final aromatic ring systems” pat-
tern in the aminothiazole molecule 3b.

Conclusion

A predictive model capturing critical structural fea-
tures for GPCR binding was built on the basis of a large
experimental standardized profiling dataset. The pre-
diction ability of the model was evaluated by synthesiz-
ing and testing a collection of GPCR-predicted com-
pounds on a large series of GPCRs from different
families, thus experimentally validating our approach.
To our knowledge, this is the most extensive experi-
mental validation of a GPCR focused library.

Significant hit rate enhancements were obtained not
only for the receptors present in the database but for a
wide array of other GPCRs, including peptide receptors.

Such an approach could have a general value and be
utilized for other target families (enzymes or receptors).
It should allow identification of new privileged scaffolds
for each of these families and understanding how
specific structural modulations provide pharmacological
selectivity and specificity.

Experimental Section

In Vitro Assays Experimental Protocol. Evalua-
tion of the affinities of compounds for each receptor was
determined in radioligand binding assays, performed

Figure 8. Compounds of the GPCR library compared to representative structures for two peptide receptors.
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following standard operating procedures (details pro-
vided in the Supporting Information).

Protocols for binding assays included a minimum of
eight control wells (nonspecific and total) and a standard
reference compound that was tested in each experiment
at several concentrations to obtain a competition curve
from which its IC50 was calculated. Total binding was
determined in the presence of the vehicle of test
compounds. Nonspecific binding was determined in the
presence of an excess of an appropriate compound.

Membrane homogenates were incubated with a de-
termined concentration of the appropriate radioligand
in the absence or presence of the test compound.
Following the incubation, the samples were filtered
rapidly under vacuum through glass fiber filters, dried,
and then counted for radioactivity in a scintillation
counter using a scintillation cocktail. The results were
expressed as a percent inhibition of the control radio-
ligand specific binding.

Supporting Information Available: Details of the ex-
perimental procedures of the various in vitro assays. This
material is available free of charge via the Internet at
http://pubs.acs.org.
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